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ABSTRACT
This paper studies the existence of periodic solutions for a family of

semilinear wave egquations where the resatoring force is independent of time,
monotone, and grows at a more rapid rate than linear near infinity. With
appropriate technical assumptions it is shown that there is an unbounded
sequence of such free vibrations, i.e. there are solutions of arbitrarily
large amplitude. If the restoring force is independent of x, the

nonoton;cfty assumption can be omitted.

AMS (MOS) Subject Classifications: 35L70, 47H99, 58E0S

Key Words: semilinear wave equation, time periodic solution,
minimax methods, critical point, critical value
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SIGNIFICANCE AND EXPLANATION

We consider the existence of time periodic solutions for a class of
nonlinear wave egquations with a restoring force which is ind.pendo_nt of
time. Our equations model the motion of a "linear" string with fixed
endpoints and a nonlinear restoring force. Assuming this force depends
monotonically on the displacement and grows at a “"superlinear® rate near
infinity, we show there is a large class of periods for which there are
arbitrarily large time periodic solutions. PFor forcing terms which are

independent of x, we can drop the monotonicity assumption.
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The responsibility for the wording and views expressed in this descriptive
summary lies with MRC, and not with the author of this report.
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LARGE AMPLITUDE TIME PERIODIC SOLUTIONS OF A SEMILINEAR WAVE EQUATION
Paul H. Rabinowitsz*

INTRODUCTION

Several recent papers establish the existence of time periodic solutions of autonomous
or forced wave equations [1-17). We will focus on the former gquestion here and study
(0.1) ey = Uy, + fix,u) =0, 0 <x< teEeR
together with the boundary and periodicity conditions
(0.2) u(0,t) = 0 = u(g,t), teR

uix,t + T) = u(x,t), x € [0,8)
Oour goal is to prove the existence of large amplitude solutions of (0.1)=(0.2). More
precisely our main result is
Theorem 0.33 Suppose £ € C([0,2] x R,R} and satisfies
(£4) £(x,§) is strictly monotone increasing in £, and
(£;) there exists u > 2 and r > 0 such that for |E| > r,
£
0 < pr(x,§) = uJ fix,s)ds € Ef(x,E)

Then for each R > 0 and for each T which is a rational multiple of £, there exists a
weak solution u of (0.1)-(0.2) with ful _ > R.

L
Remark O.4. (a) By a weak solution of (0.1)=(0.2), we mean a function

a€ec((0,t] x R,R) satisfying (0.2) and

T £
(0.5) [ ] tate, = 4.0 + f(x,u)4laxdt = 0
0 0

for all smooth ¢ which also satisfy (0.2).

*Department of Mathematics, University of Wisconsin-Madison, Madison, WI 53705

This research was supported in part by the National Science Poundation under Grant No.
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i (b) HRypothesis (tz) implies there are constants a,,s; > 0 such that

']

i (0.6) | P(x,E) > a || a, .
L]
] for all § e R, i.e. F grows at a “"superquadratic” rate as |£| + ®» Hence f grows at
‘-; a “"superlinesr®” rate as |§| + = via (£,).
. (c) If £ in Theorem 0.3 is smooth, it is known that any corresponding solution of
oy (0.1)~(0.2) is also smooth (6], [15].

If f is independent of x, hypothesis (f,) can be eliminated:
Theorem 0.7; If £ € C(R,R) and satisfies (f,), then the conclusion of Theorem 0.3 holds.
The existence of one nontrivial solution of (0.1)-(0.2) has been establighed by
Brezis-Coron-Nirenberg (5], Chang-Dong-Li [8] and Rabinowitz [15). These authors require
(£4), (£3) or somevhat weaker conditions together with some further assumption(s) on £ at
E= 0. In [5] and (8], the authors use a Legendre transformation to aid in converting the
problem to a simpler one. Such an approach perhaps can be used here in the setting of
Theorem 0.3. (As a first step one can produce a time independent solution of (0.1)=(0.2)
and then via a change of variables further assume f£(x,0) = 0). However the Legendre
transformation requires (!1) and therefore it will not work for the setting of Theorem
0.7. We use an approach that works for both Theorems 0.3 and 0.7; in fact after some
observations the proof of the latter result is a simplification of the proof of the former.
Theorem 0.3 was largely motivated by an analogous result for Hamiltonian systems of
ordinary differential equations
(0.8) £ = o (z)
under solely an assumption like (f,) [18]). To obtain the result of [18) for (0.8), rather

explicit estimates were required for a comparison problem and such estimates do not seem to

be available in the setting of (0.1)=(0.2). Therefore we have had to use a different
argument which obviates the comparison problem and which can be used to provide a new and
somevhat simpler proof of the main result of {18}. Another difference between (0.8) and

(0.1)=(0.2) is that solutions of (0.8) lie on surfaces H(z) E constant = ¢ which for

large ¢ and "superquadratic® H bound compact starshaped neighborhoods of 0 in .Zn'
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Solutions of (0.1)=(0.2) also satisfy a comservation law but of a much weaker sort and even

{f a solution is of large amplitude, it must pass through 0 because of (0.2).
A major Aifficulty in treating (0.1)-(0.2) stems from the fact that the linear problem

(0.9) Ov = Vet ~ Vax 0
where v also satisfies (0.2) and T is rationally related to £ has an infinite
dimensional space of solutions, MN. The monotonicity assumption (t,) is used to estimate
the component in N of a solution u of (0.1)=-(0.2). Quite recently Coron [7] has noted
that if one restricts [0 to an appropriate subclass 8 of functions satisfying (0.2),
then N5 = {0}. Hence 1€ £ 1 8+ 8 one can do without (£,). In fact using this
observation and techniques from [18], Coron proved a result like Theorem 0.7 under the
further hypotheses of polynomial growth for £ and £(0) = 0. Our proof of Theorem 0.7
also relies on his cbservation. If T is not ratiomally related to 2,8 = {0} but one
encounters small divisor problems in trying to invert [. It is an interesting open
question as to how to treat (0.1)-(0.2) for this case,

- An outline of this paper is as follows: In §1, (0.1) will be replaced by a modified
problem, roughly as in [15]. Solutions of the modified problem will be characterized as

4 critical points of a variational problem. In §2 the existence of such critical points will
be established and some qualitative properties of the critical values will be studied.
Suitable estimates for the critical points will be obtained in §3 and combined with the

results of §2 to solve first the modified problem and then the original one in the setting

2"y

of Theorem 0.3 via a limit argument. Lastly in §4 we prove Theorem 0.7.
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f+. PORNULATION OF THE MODIFIED PROBLEM
. Por definiteness in vhat follows, we set £ = ¥ and T = 2%, The general case is
Ly
,:. treated similarly. Let Q & [0,¥) x [0,2%] and |Q| = 2v°.
Vi
N Roughly speaking, solutions of (0.1)-(0.2) are obtained as critical points of the
P 1
corresponding functional:

o 1,2_ .2

(1.1) ) = [ [3 (] = uy) - Plx,u) Jaxde .

2, Q t x

]

¢

4 A patural space in which to treat (1.1) is suggested by the quadratic wave form in (1.1).

- Any smooth function u satisfying (0.2) has a Pourier expansion of the form:

Se

o
¥ - o

- ikt -

v (1.2) u=J J a, sinixe, a =3

.'f j=1 km-e Jk Jo=k 3.k
e -~

N Let E denote the Hilbert space obtained as the closure of the set of such functions under
o

» 2 T T 2_ .2 2

- rat e 7T and- st Nlagl

;:’ j=1 km-= 4

Purther set

I - PS
i £ ={ue Elay, = 0 for Ikl <3}, ]
:: E ={ue ".jk =0 for |x| >3} .
b ' and B = (uesla, =0 for 3* Ik}

. Then l’. B, E° are complementary subspaces of E on which the wave form is positive
V2 definite, negative definite, and null. Indeed if v € E* is smooth, v satisfies

<
;1!“‘. (0.9) and (0.2) and it is easy to see thera igs a p € Lz(s1) such that

!

P vix,t) = p(x + ¢t) - plx = t). It is also not difficult to verify that
L

v, (1.3) ful . <a lnl;

N L)

22
:::. for all uex' 0 E and s € (2,%) where a is a constant depending only on s [9].
“ Moreover the injection E' @ B + L® 1s compact.

!

A As wvag noted in (0.6), P(x,§) grows more rapidly than quadratically as |§| +» »
S Since there is no upper restriction on this rate of growth, I(u) need not be defined on

:
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all of ;. This is one obstacle to finding critical points of I in a direct fashion. A
second difficulty is .thct in order to apply minimax methods to I, one generally needs
sone compactness for I as embodied in the Palais-Smale condition and that seems to be
lacking relative to E°. Hence we vill modify the problem, both in terms of I and E,
in the aspirit of (15]) and [19]).
Note that any u € E can be written as u=v+w where VEE® and weE oE.
set mige w'2(Q), w'zx* ex", and E=n o N'. It is easy to ses that since the
elements of ¥ are essentially functions of one variable, v € N implies v is
continuous. Moreover if v €N,
| viaxae = [ viaxae > [ viaxae
Q Q Q

ana iz v en!,

|2

2 2 2
K2 - $211a,1% > la
:t?xl Ix mle Ix

Thus as norm in B we can take

2 2 2 1ol
(1.4) lul‘ 2 lul® = Ivtl 2 +

2 2 2
Ix® - 3% la_. |
L 3*§kl Ix

where u = v + w has an expansion as in (1.2). It is easy to see that N and uj' are

orthogonal subspaces of E under the inner product associated with (1.4),

With r as in (£,), let K> r and let t!(x.ﬁ) be a function continuous in x,§,K
and satisfying (£,), (fy) with U replaced by U independently of K and such that
£,0x,8) = £(x,E) for 1E| <X and £(x,6) = § for |El > a(K). (Note that this
differs from the truncation employed in {15]). Then the primitive P, of £, satisfies

(0.6) with 84,0, replaced by a independent of K. A straightforward computation

1’ 2
shows that such an £, is given by
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(1.5) f‘(x.E) = £(x,§), 0 <E<Ckx

£(x,X) + o(£ - x)3 ¢ (£- K)E, KCECK + 1

£(x,X) + p(E - k)3 + &, K+1CECK

K+1=EEx,K) +p(E-K) + &, KCECK + 1
-, E>K+ 1 % oK)
with the analogous definition for £ < 0 provided that we take p = p(K) appropriately

~

large compared to £(x,iK), X appropriately large compared to p, and e.g.

n?

¥ = min(4, 11_%_2)' p and depending continuously on K.

Now finally fix B > 0 and for u-v*vel!lclj’, define
(1.6) I(8,Ku) = | [-;- (u: - u: - ov:) - Ptx,u) Jaxde
Q

Then I(8,Kju) € c' (E,R) (See [19]). We will £ind solutions of (0.1)=(0.2) by first
obtaining critical points of I(8,K;*). These critical points are weak solutions of

(1.7) Ou - Bv“ + f‘(x,u) =0

together with (0.2). With the aid of appropriate estimates which are independent of 8
and K for these critical points and corresponding critical values, we can choose K
sufficiently large so that ful _ < X for a solution u. Therefore fﬂ*,u) = f(x,u) and

L
letting 8 + 0 yields a solution of (0.1)-(0.2) of the desired type.
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§2. SOLUTION OF THE MODIFIED PROBLEM

We will prove that for each 8> 0, K> r, I{(8,Ks°) possesses an unbounded sequence
of critical values and associated critical points. As a first step in this direction, we
verify that the functional I(8,K;°) satisfies an important compactness condition. A
functionsl ¥ € C'(E,R) satisfies the Palais-Smale condition (PS) if any sequence (uy)
in B along wvhich
(2.1) !(u-) is uniforaly bounded and !'(u-) +0
possesses a convergent subsequence. Here Y¥' dJdenotes the Frechet derivative of VY.
Proposition 2.2; I(B,K1¢) satisfies (P8S).
Proof: let P, P°, P° denotes respectively the orthogomal projectors of E onto

B', %, and W. The form of ¥y and compact embeMing of E in 1S(Q) imply

P’ (Bxulu = w + P's(wn
.

"4s
H
)
e
-
K3
)
3 :‘

(2.3) PI'(B.K,u)u = = + P 8(ulu

RS,

PUI'(B,K,u)u = =By + P°S(ulu

for usv+tw +w ENOE + 05 vwvhere S(u) is compact. (See e.g. the analogous
situation in [19]). Thus if we show any sequence (u,) satisfying (2.1) is bounded, (2.1)
and the form of (2.3) imply (w,) possesses a convergent subssquencs.
Suppose therefore that (u,) satisfies (2.1). For large m we have:
(2.4) 12°(8,X,a )¢| < ctgl ;
vhere ¢ is free for now. Por notationsl convenience we drop the subscript m on u. By

(2.1), “o‘,o and (fl). there is a constant M > 0 such that
(1.9) ne -.:: tal > 1(B8,X)u) - % I'(B,K,u)u
-f [% £ (x,0)a = ¥, (x,0) Jaxde > o, | £, (x,ulu axde - a
Q Q

along our sequence. In (2.5) the constants 4y and a, are independent of m. The form

’ of £y and (2.3) imply

— e
. ® 8.
(S SN ALED
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X
’ € 6
(2.6) . M+ 3 lul > aslul 6~ %
55 L
by
v
3 . .
t where g, &g are independent of m. Choosing successively ¢=v =P°uy; ¢=vw = P+u:
R
i ¢ - w = Pu in (2.4) shows
(1) BIvI < [ 1£ (boudlv dxde + clvl Ca (1 + MIOIVE  + vl
K [ [
Q L L
(2.7)
(¥ e + endl

I.6

< 17(1 + Iulzs)lwtl

vhere a; depends on K but not 8 on m. Letting €= min(B8,1) and adding the

inequalities in (2.7) ylelas

(2.8) lulz < as(1 + lulss)(lvl 6 + 6 + w1 6) + 3l .
L L L L

But then by (2.6), (1.3) and its analogue for N, we have
/6

5 (2.9) we? cag(r ¢ 3%y 1ul + 31l

proof is complete.
In order to obtain critical points for I(8,K,*), we will use a variation of known
ideas (See e.g. [20]). We define a group (-61) action on B via
go\a(x,\:) » u(x,t + 9)

for u€E and 0 € [0,27). Note that
(2.10) I(B,Kiggu) = I(B,K;u)
for all u€tE and 6 e [0,2v) i.e. I(B,K;°) is invariant under this action. Let
G= {ggl € (0,27)}. wNote that G possesses a fixed point set,

Pix G 2 {u € Bjgu = u for all g e G}

It is clear that

(2.11) Fix G = gpan{sin jix|j e W} C E‘
Lesma 2,123 Por each > 0, K> r, and u € Fix G,

1(8,x,u) < lgl

g .
O AP S

vhere a5 is independent of m. This inequality implies (u,) is bounded in E and the




Proof: By (1.4), we can write

2o - opive® - [ (x,uraxae

(2.13) 1(8,X,u) -% ('t
Q

Using (0.6) for Py, (2.13) implies the estimate since Fix G C E .

sequence ¢

3

3
of J.

E are invariant gets as is

about 0 in B. We define a family Gj of mappings as follows

(2.16) Gj = {h e c(vj.z)lh satisfies (v,) - (14)}

where
(71) h is equivariant
(Yz) hi(u) =u if uerix G

”3) There is an r = r(h) such that h(u) = u if u e vj\nr(h)

(Y‘) For u-v+v*+w.evj.

a ,c- e c(vj.n,'&n, 1< ; depends on h, and ¢ is compact.

3

Now we can define a sequence of minimax values of I(8,X,°). Set
‘2013) (-] (B.K) £ inft sup I(B,K'h(\l)), j en.

J
heGj uevj

9=

Remark 2.14: Since by Lemma 2.12 I(B8,K,*) is bounded from above on Fix G

(P* @ P )h(u) = a (ulv + a (u)w + &(u)

Remark 2.,17; Note that Gj is independent of 8 and K and h{(u) = u e Gi

and the
(B,X) of critical values of I(B8,X,*) we will produce later +®» as j + =,
it follows that any critical point corresponding to ¢ j(B,K) must depend explicitly on

t whenever c¢,(8,K) > -A;IQI and this will be the case for all but finitely many values

Let [ Aenote the collection of subsets of E which are invariant under G, i.e.

AefE if guea forall uea and g € G. For example the subspaces E', E”, N of

(2.15) V_= N eE e span{sin 3x sin kt, sin jx cos kt|0 < 3,k € m and 3J < k}
1f A,Bef and ¢ : A+ B, ¢ is said to be equivariant with respect to G if

¢(gu) = gé(u) for all g€ G and u € A. Let B, denote the closed ball of radius a

where

for all
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Proposition 2.19: For each j €N, ¢ j(B,k) is monotone nonincreasing in B for fixed

K and is continuous in K for fixed 8.
Proof: The only $# term in I(B8,K,°) is

-8 [ vzdxdt
Q

Hence B > B implies 1(B,X,u) < I(B,X,u) for each u € E and therefore

sup I(B,K,h(u)) < sup I(B,X,h(u))

Yy \f)

for each h € G,. Consequently c (B,K) < c (B,K) if B> 8

3 3 b
To prove the continuity of cj with respect to K for fixed B8, note that by our
choice of f, P‘(X.E, + Pp(x,£) uniformly in [0,7] xR as K + K. Therefore for any
€ > 0, there exists &(¢,K) > 0 such that |K - K| < & implies
Irx(x,E) - ri(x,E)I < € for all (x,E) e [0;:] X R. Hence |I(8,K,u) - I(B,K,u}l < lQle
for all u € E from which it easily follows that lcj(B.K) - cj(B,i)l < lgle if
IX - Kl < 8.
Remark 2.20: If one uses the truncation for f as given in [15], it is not evident
whether ¢ j(B,K) depends continuously on K for fixed 8.

The definition of Vj and (y,) imply that

2

(2.21) c,(B,X) > sup I(B,X,u) = WB,K)

3 Fix G
It is not Aifficult to see that Vv(B,K) is a critical value of 1I(B,K,°*) corresponding to

a time independent solution of (0.1)-(0.2). We will show the numbers (c,(8,K)) form

b jen

an unbounded sequence of critical values of I(B8,K,*).

Proposition 2.22: For each B> 0, K> r, ¢ (B,K) +® as j + =

]
Proof: The form of F, implies there exists an Ay > 0 such that
6
(2.23) IP (x, )] €1 + AL LEl
for all (x,£) e [0,%] X R. Therefore
1 2 6

(2.24) 1(8,K,u) >‘[2 [5 (u: - u: - Bv) = Apu Jaxae - [l

=10~




for all u € E. In particular for u € Slpﬁ vl

-1’
(2.25) 18,0 > 0% - A [ ufaxae - Igl
. Q
If u e V;'_,.
u= 2 2 l“lil‘l x oiFt
=1 ke=o

IkI>2, ix|+2>3

Therefore,
(2.26) ? = J%l Dol - e s 15}1 53 .;k - 3ni?,
L,k L,k L
The HSlder inequality, (2.26), and (1.3) imply
(] 3 3 -3/2 3, .6
(2.27) ful”_ < 1ul”_lul <3 a lul” .
L Lz Lto 3
substituting (2.27) in (2.25) yields
18,k > 3 67 - 5732 65 - (gl
3 3 -1/4
for u € aap N v‘;‘_i where a, = A, Choosing o = pj(x) £) /o(h‘) / shows
(2.28) 1(8,K,u) >-:- o = Il
for such u. Suppose for the moment that
(2.29) NAGE NG AEY
3 ﬂ’ 3-1
for all h e G,. Then by (2.28)-(2.29), for any h € Gye
o T(E,KM(w) > dnf | HBKW 214 - gl
v veds v
3 Py -1

and consequently,

1 2
Cj("‘) > s ’j(‘) - 'Ql .
Since oj(x) +® a3 j+ e, Proposition 2.22 then follows.
It remains to verify (2.29)., 1f r(h) < pj, (2.29) is trivial via (73). Thus we

can assume r(h) > ’3' It suffices to prove that

a{f=




\

b
.
.

v

L TR

25,
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.

Pk bt Skt
eVela

a0
Telale

‘a

1l
n n
(2.30) hB_y) n vj) anpj Vieg B 6.

This follows as in analoguus situations ine [18), [20]. 1Indeed if Fix G were finite
dimensional, (2.30) follows immediately from Theorem 3.9 of [20) or Corollary 1.25 of
[18). We can either introduce the topological index theory of [20] and repeat the
arguments of [18] or [20] slightly modified since Fix G is infinite dimensional or more
simply use e.g. Corollary 1.25 of [18] and an approximation argument. Pursuing the latter
course, let

wz-span{a!.nsx | 1<8 <28} cPix G
and let P

2
Then appropriately identifying our situation with that of [18), Corollary 1.25 of [18]

denote the orthogonal projector of E onto etene [((!‘186)10 E)e "ll'

implies

o~ ~ 1
(2.31) p‘h(nr(h)r\ B,V ) n aap n v:'_1 t ¢

3 3

* - ~
L] E n
for all ¢ € M. Thus there exists u Ew, + \f + v, e (Br(h) Plvj)

(g} v;_ 3 gince Br(h) 0N .vj is closed and convex, a subsequence of u

such that
ch(uz) e anpj t
converges weakly to u = w+ +tviw € Br(“) nv 3° Since P*vj is finite dimensional, we

can assume v* converges strongly to wh. By (‘14) and our choice of u

L Iy

°~ - ° °~ -
P Plh(ul) a (u‘)vl + P P‘Q(u'_) 0
(2.32)

-4 P"h(u") =q (u‘)v + PP

. z"“z’ =0

The properties of a°, @, and & now allow us to conclude from (2.32) that vy and v;

v and

also converge (along a subsequence to v, w respectively. Hence u € anr(h) n 3

hiuw) e 38 N vF ., 1.e. (2.30) holds.
Py 3-1

One final preliminary is required to show that the numbers c_(8,K) are critical

b
values of I(B,K,*). Let l(‘= = {u ¢ B|I(B,K,u) = ¢ and I'(B,K,u) = 0} and

A. = {u e E|1(B,K,u) < s}.

Proposition 2.33: For each c € R, t> 0, and invariant neighborhood O of Kc' there

exists € € (0,6) and n € c([0,1] x E,E) such that

-2~

. DR R -~ .-" -
. T v SR T, . aly» .o
SR PURPULIE. D LY Y
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T T T T T T T T o s =s
1* n(1,¢) is equivariant
s 2° n(1,u) =u 4if I(B,X,u) ¢ [c - T,c + €]
- 3 n(1,u) satisfies (v,)
4° n(!,Aen\O) CAe-e
3 S 1t Kc = ¢, “"'Aen) CA‘=__c
i: Proof: Since I(B,K.,°) € C‘(l,l) and satisfies (PS) via Proposition 2.2, all assertions
L save 3° are standard. See e.g. [21). As in [18]), 3° follows since n{t,u) is the
L solution of an ordinary differential equation of the form
; (2.34) B o -amry(m + P
: n{0,u) = u
G; where 0 is a scalar function with 0 € 0 < 1, P 1is compact,
I ACET ST RN O R T
and 'l"(u) is the Prechet derivative of 'B' Letting n = n’ +n" + n° and projecting
J (2.34) on E°, N ylelds
1 %2: = -a(n}(=n + P P(n)
- (2.3%)
5 n(o,u) =P us=w
; and
-:—:‘: = «g(n)(=Bn° + P*P(n))
2 (2.36)
- n*(0,u) = v
Integrating (2.35) and (2.36) shows n has the form (Y‘).
Now finally we can prove
Propogition 2.37; For each 8> 0, K> r, I(8,K,*) possesses an unbounded sequence of
i: critical values.
5 Proofs Aif cj(l.x) = v(8,K), cj(B.K) is a critical value of I(8,K,*) by a previous
remark. Thus suppose ej(l,l) > v(8,K). We argue in a standard fashion. 1f cj(!.x) is
, not a critical value of I(8,K,*), let ¢ -% (¢=j = V). Then there is an € > 0 and
j' ' nec(o,1] xE,E) as in Proposition 2,33, Choose h e G, such that

-{3=

o R R S
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4

(2.38) sup I(8,K,h(u)) < c’ + e
v
b |

Let h = n(1,h). Clearly h e c(V,,E). By 1° of Proposition 2.33 and (v, h satisfies

b
(v,)e By (v,), 2° of Proposition 2.33, and our choice of t, h satisfies (v,). By

(Y,) and 3° of Proposition 2.33, h satisfies (Y,)e Assume for the moment that h

also satisfies (v,). Then l’:ecj and

(2.39) sup I( 8,X,h(u)) > c, .
v b |
b |

But by (2.38) and 5° of Proposition 2.33,

(2.40) sup I(B,K,hlu)) < ey ¢
v
3

contrary to the definition of c_(8,K). Thus c_(B,X) is a critical value of I(B,K, )

3 ;|
provided that h satisfies (Y,)e 8ince h satisfies (v,), hi{uw) =u for

unev For such u, writing u=w' + v~ ¢+ v, we have

5\Br(n)°

(2.41) 18X = 3 (w'0? - wT0? - pivr?) - [ r (x,u)anae
Q

By (0.6) for Py,
(2.42)  1BKA) ¢ 3w’ 1? - Wi - piei?) - 37 [ lulVaxee + T)0)
Q
<7 '1? - i - opier?) - o (] I Paxe)V2 4 T
Q

Since ¥ > 2 and e nv is only finite dimensional, it is easy to see from (2.42) that

3
I(8,K,h(u)) + =» uniformly as lul + » {p v, and in particular is less than

c,(l.!) - € ftor large u in v,. Hence for such u, h(u) = u via 2° of Proposition
2.33 and (73) is satisfied.

Lastly for fixed 8 and X, c_(B8,K) forms an unbounded sequence by Proposition

3
2.21.
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Corollary 2.43; Let u’(s,x) be a critical point of I(8,K,*) such that
I{8,K,u,) = ¢ (B,K)e Then Iu (B,K)] _+® a5 J o+ =

3 3 3 L®
Proofs Since for u = \Ij(’.l).

I (8.K,u0u = 0 = [ (] = o} - 0vD) - £ (x,ulalamae ,
Q

(2.44) o,(8,%) = ‘], 5 £gtxda - 7 (xou) Jaxae

Thus 1f u,(8,X) ware bounded in ", (2.44) shows ¢,(8,X) would be & bounded sequence,

contrary to Proposition 2.37.

Remark 2.45; Mote that it has not yet been establighed that Mj(l.x) 't.' < » for any

3. This will be done in §3.

Remark 2,463 A wore delicate existence argument based on the index theory of (20] can be
used to obtain a sequence of critical values of I(8,K,*) as well as a multiplicity

statement for degenerate critical values as in [18] and [20).
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§3. THE PROOF OP THEOREM 0.3

3 In this section the regularity of the critical points of I(B,K,°*) will be studied.
.; It will be shown that u,(B.K) is a weak solution of (1.6), (0.2). In the process

- estimates for .“’“""x.. independent of 8 and X will be obtained. This will aid us
in finding large amplitude weak solutions of (0.1)=(0.2) via a limit argument. In what
follows we alwvays assume 8> 0 and K > r.

Proposition 3.1: There exists a constant Hj independent of § and K such that

\ Cj(’p‘) [ 4 -j.

- Proof: Since h(u) =u e G’, by (2.18) and (2.42),
oy

e, {3.2) cj(ﬂ,x) < sup I(B,X,u) ¢

v

Fou, b}

< .up% (w'e?

= w2 avi®) - a (f 1 113 (v1?)axee ) V2 +a,lel
v 0
j .

vhere a; is independent of § and X. The form of the right bound side of (3.2) shows

(3.3) c,(8.x) < Tzlql + sup % wr? - a(/ ﬂ“"lm!t)""2
uvjnl Q
.: 8ince V 3 N ;’ is finite dimensional and i > 2, the quadratic term on the right hand

side of (3.3) dominates near 0 and the j term near infinity. Hence the supremum is

positive and is achieved at some u €V, N E'. Therefore

b
=W 1 =2 ) 2,-02
(3.4) u,lul 2 < 2 ful” < 2 3" tut 2
L L
Consequently
X
- (_12_);'3
ful < Er
Lz 2., 3
and by (3.3),
__ 2
‘__:: (3.9) cj(l.l) < a, |q| + j ’j !uj
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jesma 3.6; If u is a critical point of I(B,K,°),

(3.7) lt‘(-.u)l 1 € a‘lx(lat.u)l +a,
L

wvhere the constants 4&a,, &g are independent of § amd K.

Proofs If u 4ie & coritical point of I(B,K,°*),

(3.9) (8, K,u) 6= 0

for all ¢ €B. Choosing ¢ = u gives

(3.9) I(8,X,u) - 3 I'(8,K,0)u = ‘{ B u gptx,u - rotx,u) Jaxae .

Wow applying (f,) yields an L' bound for u fy(x,u) from which (3.7) easily follows.

Ixoposition 3.10: 1f u-v+v¢l-l0ll is a critical point of I(8,K,*), then

vecinu anda wec'nwt.

Proof:s Since gy €B, v e "'2 N W and therefore v is continuous. The form of £, and
(1.3) tmply £ (,u) €1’ for all s € (1,). Choosing ¢ €N in (3.8) ehove
(3.11) ‘]' (Bv, ¢, + £ (x,u)$)dnde = 0
For $€E, let
Vixe) = e + 8) - Kx,e))
and let P, denote the orthogonal projector of R oato
span{sin Ax sin ft,ein tx cos &t | 1 € & < n}

- ((an) ) in (3.11) yields

Taking ¢ = t.(v

-8
).2.

&2 TP 2m»nw‘

(3.12) gicp v )
nt L L

I’_‘,
L
fetting & + 0 4in (3.12) shows

(3.13) ‘“'n',tt'LQ < l!!('.u) '1,2 .

Wow letting n ¢ e ghows v € '2,2, Thus by (3.11), g = .l“ - !K(x.v) e Lz 0 ul. Since

1 1

venR implies v €N, g=Pg~ P"’!x(-.u) where pl = p* ¢+ 2", By a reqularicy

result (({22), (6], or [1S)) for solutions of (0.2) and

7=

RS

R




. P
oy

E T

7

Dw=g,

v is ocontinuous. A represestation result for solutions of (3.11), ((2.46) of [13]), then
shows v € (:z and

(3.14) “"t.x,' < ‘"‘(.,'";,.

for s=1 and ®, Nence by [22), (6], or [15] and (3.14), weC' and

(3.18) Wi Sagiepy, 4 g (o)l Caie et
L L 13
(3.“, .'." - < .s'-.'et + ‘l‘.vn) ln. < .‘.!‘( .0‘) 'L. .

Wext we will obtain further § and K independent bounds for v and w.

Proposition 3.17; There is a constant u’ independent of § and K osuch that if

1
‘,(.0‘) 3 'j“"’ + vj(ﬂ.t) enen

- c’(!.l). then

is a critical point of I(B,K,°*) oorresponding to

lv,u.xu!‘_ + lv’(l.!)l"'_ <, .
Proof: Proposition 3.1, Lemma 3.6, and (3.15) give an L~ bound for v (8,K) independent
of B and K. Lesma 3.7 of [15] then provides the most delicate step: am L bound for
v,(8,X) independent of § and K. Lastly (3.16) yields the w''" bound for v ( BE).
Remark 3.19; Inequalities (3.7) and (3.15) and the proof of Lemma 3.7 of (15] show there

exists a monotone increasing function ¢ such that

(3.19) 1o (B,K)0 _ < ¢(c

3 . j(ﬂpl)) < O(Il’) 5K

3
for all j em.

Propogition 3.20; Por fixed ) and K the functions v’(l.l) fora an equicontinuocus
family in C(Q) N W,

Proof: This is a restatement of Lemma 3.29 of (15) wvhere we get vhat in our setting is a
uniform modulus of ocontinuity for the functions v’(l.l).

With the aid of these preliminaries we can now give the:

-18-
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Proof of Theorem 0.): First we will produce a solution u of (1.7}, (0.2) with
R < lul € K. Thus fix 'B>o, R>r, and K> R. Set
L

(3.21) R B e lol max il gex, O - POx, O

. »e(0,%]

40
If u % u(B,X) is a weak solution of (1.7), (0.2) with ful _ ¢ R <K, (3.9) shows that
L
(3.22) 12(8,%,u)} = |f [% u £lx,u) = P(x,u) Jaxdt| < WR) = 1 ¢ WR)
Q

Define K = max(R,$($(R))). By Proposition 2.37, (cj( B.i)),- is an unbounded sequence
of critical values of I(8,K,*). Therefore we can choose j so that cj(ﬂ.i) » ¥R).

with j now fixed, consider c,(8,X) for K € [K,X.] ¥ I, where X, was defined in

b | b |
(3.19). (ror future reference note that j and therefore 1, depend on B). Bince
c,(l,l) is continuous in I’ by Proposition 2.20, either there is a K € 1’ such that

(B,X) = %(R) or ¢ (l.lj) > $(R). In the formar case, by (3.19)

s 3

(3.29) 1o (8RN _ € Ho (B,K)) = WM <& <K
L .

s0 u,(l.l) is a weak solution of the untruncated eguation

(3.24) Ou=29pv_+ f(x,u) =0

tt
together with (0.2). In the latter case, (3.19) implies \l’(..l’) satisfies (3.24) and
(0.2). Thus in either case there exists K= l;(.) e 1’ such that l\l’(..!) IL. <K and
n’(‘.l) is a weak solution of (3.24), (0.2). Noreover e’(l.l) > R) so (3.22) and

(3.21) imply that lu’

It remains to find a solution of (0.1)=(0.2), Li.e. & solution of the above type with

(.a‘.". > Re

$=0. As was noted above, j depends on B, i.e. ) = 3(8) and hence possibly
x;“)o- as B + 0. If s0 we may not be able to coatrol u’(..l;(l)) as B +0. To
get around this potemtial difficulty, we will get a § independent estimate for 3.

To begin we apply the above argument with 8 = 1. MWow fix the j and therefore I,
80 dstermined and consider o.(B,X) for B¢ (0,1) and X @ I,. By Proposition 2.20,

3
<1 implies o,(8,K) D¢ (8,%) » c,(i,f) > WR). Since X, is now

3

("‘)o Thus ¢

3 3

-19-
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independent of B, our earlier argument yields K = X*(8) € I, for each B € (0,1].

3 3
L‘ Choosing a sequence l- + 0, we obtain a sequence of weak solutions uj(q-,x;(ql)) of .
3)
N (3.24), (0.2) with R ¢ luj(ﬂ-.R;(B-))lL. < x;(ﬁ.) < Kj. By Propositions 3.17 and 3.20 the
N functions w j(B..!;(B-)) are uniformly bounded in c! (Q) and the functions

'j"-“;( B-)) are uniformly bounded and equicontinuous in C(Q). Thus we can pass to a

s

vt )
ean ntyee’stl

limit in C(Q) to get a weak solution uy of (0.1)-(0.2) with R < Iu,l - $K

3 . The

,-

proof of Theorem 0.3 is complete.
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§4. THE PROOF OF THEOREM 0.7

The proof of Theorem 0.7 parallels that of Theorem 0.3 but is much simpler. Therefore
we vill be rather sketchy here. Again we take L = ¥ and T = 2%, Consider all functions
vhich satisfy (0.2) and
(4.1) (1) ul(x,t + ¥) = u(x,t)

(14) u(y = x,t) = uix,t)

Substituting (4.1) (1) into (1.2) shows ayy = 0 if x is odd. Similarly (4.1) (ii) and
(1.2) imply ayy = 0 4f 3 iseven. Thus ] must be 0odd and k even in (1,2) for (4.1)
(1), (11) to hold. Let B, denote the subspace of ; of such functions. As was noted by
Coron (9], ®° N, = {0} eince ay4 = 0.

Let lf - l‘ n ?. Then l1 - l: ® l; and lf are orthogonal subspaces of E,.
Noreover l: are invariant under G as is

X - l; © span{sin jx sin kt,sin jx cos kt |
0<3, x<m, <Xk, 3 odd and %k even)

Thus the arguments of §1-2 with B replaced by X, and Vy Dy Xy show I(0,K,*) has
an unbounded sequence of critical points u,(o.x) with corresponding critical values
e’(o.!) depending continuously on K. It remains to show that for appropriate 3J, K,

u’(o,t) is a weak solutiom of (0.1)-(0.2) with R < Iu (0,K)¢ - S Ke
L

b
Note that if g satisfies (4.1) and Dw = g, then e.g. via Fourier expansion,

ve l‘. In particular if g = ~f (u) with u e x,, then fy(u) satisfies (4.1).

Therefore the arguments of §3 suitably simplified carry over to the present case and the

proof is completed as earlier.

Remark 4,2: The above argument works equally well if f also depends on x provided that

£({x,¥) = £(» - x,¥),

-21-
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